Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119388, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1142229

ABSTRACT

Prospective antiviral molecule (2E)-N-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide has been probed using Fourier transform infrared (FTIR), FT-Raman and quantum chemical computations. The geometry equilibrium and natural bond orbital analysis have been carried out with density functional theory employing Becke, 3-parameter, Lee-Yang-Parr method with the 6-311G++(d,p) basis set. The vibrational assignments pertaining to different modes of vibrations have been augmented by normal coordinate analysis, force constant and potential energy distributions. Drug likeness and oral activity have been carried out based on Lipinski's rule of five. The inhibiting potency of 2(2E)-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide has been investigated by docking simulation against SARS-CoV-2 protein. The optimized geometry shows a planar structure between the chromone and the side chain. Differences in the geometries due to the substitution of the electronegative atom and intermolecular contacts due to the chromone and hydrazinecarbothioamide were analyzed. NBO analysis confirms the presence of two strong stable hydrogen bonded NH⋯O intermolecular interactions and two weak hydrogen bonded CH⋯O interactions. The red shift in NH stretching frequency exposed from IR substantiates the formation of NH⋯O intermolecular hydrogen bond and the blue shift in CH stretching frequency substantiates the formation of CH⋯O intermolecular hydrogen bond. Drug likeness, absorption, distribution, metabolism, excretion and toxicity property gives an idea about the pharmacokinetic properties of the title molecule. The binding energy of the nonbonding interaction with Histidine 41 and Cysteine 145, present a clear view that 2(2E)-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide can irreversibly interact with SARS-CoV-2 protease.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Chromones , Coronavirus 3C Proteases/antagonists & inhibitors , Drugs, Investigational , SARS-CoV-2/drug effects , Thiourea , Antiviral Agents/analysis , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Chromones/analysis , Chromones/chemical synthesis , Chromones/chemistry , Chromones/pharmacokinetics , Computational Chemistry , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Drugs, Investigational/analysis , Drugs, Investigational/chemical synthesis , Drugs, Investigational/chemistry , Drugs, Investigational/pharmacokinetics , Humans , Hydrazines/chemistry , Hydrogen/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Binding , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thioamides/analysis , Thioamides/chemical synthesis , Thioamides/chemistry , Thioamides/pharmacokinetics , Thiourea/analysis , Thiourea/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacokinetics , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL